Científicos europeos, liderados desde el Instituto de Ciencias Fotónicas (ICFO), han detectado por primera vez señales magnéticas ultradébiles por encima del ‘límite de Heisenberg’, una barrera cuántica fundamental e infranqueable hasta ahora. El hallazgo podrá mejorar la sensibilidad de instrumentos como los que se usan en las prospecciones geológicas, la navegación por satélite o el diagnóstico por imagen en medicina. “Hemos demostrado experimentalmente la superación del ‘límite de Heisenberg’, inventando una medida basada en la interacción de partículas”, explica Mario Napolitano, investigador del Instituto de Ciencias Fotónicas (ICFO, adscrito a la Universidad Politécnica de Cataluña) y autor principal del estudio que publica Nature. Hasta ahora los científicos pensaban que la precisión de cualquier medida estaba delimitada por ese límite.
Se trata de una consecuencia del ‘principio de incertidumbre’ planteado por el alemán Werner Heisenberg (indica que si se conoce la ubicación exacta de un objeto tan pequeño como un átomo, no se puede saber hacia dónde se dirige). Ahora, los científicos han detectado por primera vez señales magnéticas ultradébiles por encima del ‘límite de Heisenberg’, “un paso adelante en la comprensión de algo fundamental para la física, además de extender la frontera entre lo que podemos saber a través de una medida y lo que será inaccesible para siempre”, según Napolitano. Para realizar el estudio, los expertos han utilizado un interferómetro (un instrumento que usa la interferencia de las ondas de luz para medir longitudes de onda) con luz láser polarizada y átomos de rubidio. Con este mecanismo han detectado, a tiempo real, los campos magnéticos producidos en el corazón y en el cerebro.
El investigador aclara: “El problema nace al aplicar el principio de incertidumbre a un sistema hecho con muchas partículas, el instrumento con el que se hacen las medidas, para establecer el límite de su sensibilidad. Si todas las partículas actúan de forma independiente, la sensibilidad está delimitada por este límite. Si existe interacción, el límite se extiende, y es lo que hemos demostrado con nuestro trabajo”. El hallazgo abre un abanico de aplicaciones en campos muy diferentes, basados en la medida de campos magnéticos muy débiles (magnetometría) y la obtención de instrumentos mucho más sensibles. Los autores confían en que el avance tenga buenos resultados en la diagnosis de desórdenes del corazón y sirva para desvelar nuevos datos sobre el comportamiento del cerebro. “A largo plazo, el descubrimiento puede mejorar la resonancia magnética en medicina, la búsqueda de ondas gravitaciones en astronomía y la navegación por satélite”, subraya Napolitano. “Los interferómetros (como los de los relojes atómicos que hacen posible los sistemas GPS y Galileo, o los ópticos -LIGO, VIRGO, GEO- que revelan las ondas gravitacionales) podrían funcionar mejor utilizando las interacción entre partículas, como hemos demostrado”, añade el científico.
"La incertidumbre es una margarita cuyos petalos no se terminan jamás de deshojar". Mario Vargas Llosa
"End of transmission"




Uno de los principales objetivos del LHC es encontrar una escurridiza partícula llamada bosón de Higgs, que ha sido predicha por el modelo estándar de la física de partículas y utilizada por los científicos para explicar por qué otras partículas subatómicas como los protones, los neutrones o los electrones tienen masa. Weiler y Ho creen que si el LHC lograse producir el bosón de Higgs, al mismo tiempo éste daría lugar a una segunda partícula denominada Higgs singlet. Según la teoría de los físicos, esta nueva partícula tendría la capacidad de pasar a una dimensión extra, a una quinta dimensión, donde se podría mover hacia el pasado o hacia el futuro. En un comunicado emitido por la Universidad Vanderbilt, Weiler explica que uno de los atractivos de dicha teoría es que “elude todas las grandes paradojas” que se derivan de la posibilidad de viajar en el tiempo. La razón, según él, sería que “el viaje en el tiempo estaría limitado a estas partículas en concreto, y que no sería posible para un ser humano”. De esta forma se evitaría, por ejemplo, la llamada paradoja del abuelo, que señala que si una persona realiza un viaje a través del tiempo y mata al padre de su padre o de su madre (abuelo del viajero), antes de que éste conozca a su abuela y ambos puedan concebir, entonces, el padre o la madre del viajero del tiempo y el propio viajero nunca llegarían a ser concebidos, de tal manera que el viajero no habría podido ir al pasado. Al no viajar al pasado, su abuelo entonces no sería asesinado, por lo que el hipotético viajero sí habría sido concebido; entonces sí habría podido viajar al pasado y asesinar a su abuelo, pero no sería concebido… y así indefinidamente. Sin embargo, según Weiler: “Si los científicos pudieran controlar la producción de Higgs singlets, sí serían capaces de enviar mensajes del pasado hacia el futuro”. La prueba de la teoría de Weiler y Ho se dará si los físicos que controlan el LCH llegan a observar la aparición simultánea de partículas Higgs singlet y de sus productos de desintegración (núclidos o agrupaciones de protones y neutrones que resultan de un proceso de desintegración). Esta situación, según los físicos de la Universidad Vanderbilt, demostraría que se habrían producido partículas que viajan a través del tiempo hacia el pasado, para aparecer antes de que se llevaran a cabo las colisiones que a su vez las produjeron. Este galimatías teórico está en realidad basado en una teoría anterior: la Teoría M, que fue desarrollada en los años 90 para tratar de abarcar las propiedades de todas las partículas subatómicas y fuerzas conocidas, incluida la gravedad. La Teoría M señala que existirían 10 u 11 dimensiones, en lugar de las cuatro dimensiones conocidas, y que nuestro universo sería como una “membrana” de cuatro dimensiones (una brana ) que flota en un espacio-tiempo multi-dimensional. Según esta perspectiva de la física, las piezas básicas de nuestro universo estarían permanentemente adheridas a la brana, por lo que no podrían viajar a otras dimensiones. Pero habría algunas excepciones. Algunos científicos han propuesto que la gravedad sería más débil que otras fuerzas fundamentales porque se propaga por otras dimensiones. Otra excepción posible sería la partícula Higgs singlet, que respondería a la gravedad, pero no a otras fuerzas básicas. Weiler comenzó a investigar en los viajes en el tiempo hace seis años, con la intención de explicar ciertas anomalías observadas en diversos experimentos realizados con neutrinos. Los neutrinos han sido apodados “partículas fantasmas” porque reaccionan de manera extraña con la materia ordinaria: trillones de neutrinos chocan cada segundo con nuestro cuerpo, pero no los notamos porque pasan con rapidez a través de él sin afectarnos. Weiler y sus colaboradores Heinrich Päs y Sandip Pakvasa, de la Universidad de Hawai, dieron con una explicación para estas anomalías, basándose en la existencia de una partícula hipotética denominada “neutrino estéril”. En teoría, los neutrinos estériles serían incluso menos detectables que los neutrinos corrientes porque interactúan sólo con la fuerza de la gravedad, es decir, no realizan ninguna de las interacciones fundamentales que contempla el Modelo estándar de la física de partículas. Además, según Weiler, Päs y Pakvasa, los neutrinos estériles viajarían a una velocidad mayor que la de la luz a través de “atajos” existentes entre las dimensiones extra. Según la Teoría de la relatividad general de Albert Einstein, existen ciertas condiciones en las que viajar más rápido que la luz es equivalente a viajar hacia atrás en el tiempo. Este aspecto de la Teoría de la relatividad es lo que llevó a los físicos al terreno especulativo de los viajes en el tiempo, y finalmente a Weiler a crear la teoría del Higgs singlet. En los últimos años, se han realizado diversos avances teóricos en lo que al viaje en el tiempo se refiere. En 2006, por, ejemplo, un físico de la Universidad de Connecticut, en Estados Unidos, publicó que había creado un prototipo de máquina del tiempo que utilizaba energía luminosa en forma de rayos láser para curvar el tiempo y así desplazarse por él. Por otra parte, en 2007, un equipo de científicos israelíes estableció un modelo teórico para el viaje en el tiempo, que demostraba que se podía generar un bucle espacio-temporal a partir únicamente de materia ordinaria y densidad de energía positiva. Por último, el año pasado, un físico del MIT ideó otro modelo teórico de viaje en el tiempo que resolvía el efecto paradójico de este tipo de viajes, gracias a ciertas propiedades de la física cuántica. "El instante es la continuidad del tiempo, pues une el tiempo pasado con el tiempo futuro". Aristóteles "End of transmission" 


En tanto, también se estima que el terremoto podría haber desplazado 10 centímetros el eje de la Tierra. Esta versión fue lanzada por el instituto Nacional de Geofísica y Vulcanología de Italia (Ingv).

